Genetic diversity of the captive Asian tapir population in Thailand, based on mitochondrial control region sequence data and the comparison of its nucleotide structure with Brazilian tapir

Yuttamol Muangkram, Akira Amano, Worawidh Wajjwalku, Tanu Pinyopummintr, Nikorn Thongtip, Nongnid Kaolim, Manakorn Sukmak, Sumate Kamolnorranath, Boripat Siriaroonrat, Wanlaya Tipkantha, Umaporn Maikaew, Warisara Thomas, Kanda Polsrila, Kwanreaun Dongsaard, Saowaphang Sanannu & Anuwat Wattananorrasate

To link to this article: http://dx.doi.org/10.3109/24701394.2016.1149828
SHORT COMMUNICATION

Genetic diversity of the captive Asian tapir population in Thailand, based on mitochondrial control region sequence data and the comparison of its nucleotide structure with Brazilian tapir

Yuttamol Muangkrama, Akira Amanob, Worawidh Wajjwalkuc, Tanu Pinyopummintrc, Nikorn Thongtipd, Nongnir Koilm, Manakorn Sukmakc, Sumate Kamolnorranathd, Boripat Siriaroonratd, Wanlaya Tipkanthad, Umaporn Maikaew, Warisara Thomas, Kanda Polsrilad, Kwanreaun Dongsaardh, Saowaphang Sanannui and Anuwat Wattananorrasatej

aGraduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga Japan; bThe Graduate School, Kasetsart University, Jatujak, Bangkok, Thailand; cFaculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand; dBureau of Conservation, Research and Education, Zoological Park Organization, Dusit, Bangkok, Thailand; eKhao Kheow Open Zoo, Sriracha, Chonburi, Thailand; fNakhon Ratchasima Zoo, Muang, Nakhon Ratchasima, Thailand; gSong Khla Zoo, Muang, Song Khla, Thailand; hChiang Mai Zoo, Muang, Chiang Mai, Thailand; iDusit Zoo, Dusit, Bangkok, Thailand; jSafari World Public Company Limited, Klongsamwa, Bangkok, Thailand

ABSTRACT

The Asian tapir (Tapirus indicus) has been classified as Endangered on the IUCN Red List of Threatened Species (2008). Genetic diversity data provide important information for the management of captive breeding and conservation of this species. We analyzed mitochondrial control region (CR) sequences from 37 captive Asian tapirs in Thailand. Multiple alignments of the full-length CR sequences sized 1268 bp comprised three domains as described in other mammal species. Analysis of 16 parsimony-informative variable sites revealed 11 haplotypes. Furthermore, the phylogenetic analysis using median-joining network clearly showed three clades correlated with our earlier cytochrome b gene study in this endangered species. The repetitive motif is located between first and second conserved sequence blocks, similar to the Brazilian tapir. The highest polymorphic site was located in the extended termination associated sequences domain. The results could be applied for future genetic management based in captivity and wild that shows stable populations.

Introduction

The Asian or Malayan tapir (Tapirus indicus, Desmarest 1819) is scientifically classified in the family Tapiridae that has four extant species (Carter 1984). The Asian tapir is only found in Southeast Asia and it is isolated from the other three species, which are found in the Neotropical Americas. The recent geographic distribution of the Asian tapir includes Thailand, Myanmar, Malaysia, and the island of Sumatra in Indonesia (Corbet & Hill 1992). The population is now categorized as Endangered on the 2008 IUCN red list of threatened species (Lynam et al. 2008) resulting from the main threat, i.e. habitat loss (Medici et al. 2003), although it is now showing signs of recovery following wide-scale protection of their preferred habitat (Lynam et al. 2012). The most variable segments of the mtDNA genome are located in the control region (CR) or displacement loop (D-loop) in most mammal species (Cann et al. 1984), including...
Asian tapirs (Muangkram et al. 2016). The mitochondrial control region contains the major regulatory elements for replication and expression of the mitochondrial genome and it is commonly used to determine the intra-specific level of genetic diversity among populations (Sbisa et al. 1997). The composition of the CR includes three domains: extended termination associated sequences (ETAS), the central domain, and conserved sequence blocks (CSB) (Sbisa et al. 1997). The ETAS contains two blocks that are conserved in most mammal species (ETAS1 and ETAS2), and the CSB is also strongly conserved with three blocks (CSB1, CSB2, and CSB3). CSB1 in particular is an essential element of the mammalian mtDNA genome (Sacccone et al. 1987; Sbisa et al. 1997). To date, the CR sequences of two Tapiridae species have been deposited in GenBank including one haplotype of Brazilian tapir (accession number AJ428947) (Armanos et al. 2008) and three haplotypes of Asian tapir (accession number NC023838, KJ417808, and KJ417810) from our previous study (Muangkram et al. 2016).

In this study, we described the first phylogenetic analysis of the CR sequence of captive Asian tapirs in Thailand. The sample analysis was also including the DNA representatives from our previous study (Muangkram et al. 2013b) and additional specimens. The results give the genetic information for matching of this endangered species in conservation breeding program to maintain the genetic diversity. Furthermore, we also comparatively analyzed the nucleotide structure between Asian tapir and Brazilian tapir to provide the basic knowledge of genetic relationship within Tapiridae species.

Methods

We collected 37 blood and hair samples from captive Asian tapirs held in zoos under the Zoological Park Organization of Thailand (Dusit Zoo, Khao Kheow Open Zoo, Chiang Mai Zoo, Nakhon Ratchasima Zoo, and Song Khla Zoo) and one private zoo. Blood samples were collected using our previous method (Muangkram et al. 2013a) and hair samples were kept in zip bags. DNA was extracted using a modified phenol/chloroform technique with ethanol precipitation (Nelson & Krawetz 1992).

The full-length of the CR was amplified using DreamTaq DNA Polymerase (Fermentas International, Saskatchewan, Canada) and one primer forward: primer on tRNAPro 5'-CAC CCA TCA ACA CCC AAA GCT-3' (Muangkram et al. 2016) and the reverse primer on tRNAPro 5' -GGG CAT CTT CAG TGC CTC GCT T-3' (Ward et al. 1999). The total reaction volume for each PCR was 50 µl, which included 5 µl of 10× Taq buffer with (NH4)2SO4, 5 µl of dNTP (0.2 mM of each), 1 µl of each primer, 4 mM of MgCl2, 1.25 U Taq polymerase, 1 µg of template DNA, and nuclease-free water. PCRs were performed using an initial denaturation step of 3 min at 95 °C followed by 35 cycles of denaturation for 30 s at 95 °C, annealing for 30 s at 54 °C, and extension for 60 s at 72 °C, and final incubation at 72 °C for 10 min. The desired PCR product sized 1355 bp in length was first confirmed using 1.5% agarose gel electrophoresis and then purified using the GeneMark Gel Elution kit (GeneMark Inc., Taipei, Taiwan) according to the manufacturer's instructions. All confirmed PCR products were sent to 1st BASE Laboratories in Malaysia for DNA sequencing. The complete CR sequences from this study have been deposited in GenBank under accession numbers KM100153–KM100189.

The 37 CR sequences were aligned using CLUSTALW (Thompson et al. 1994) via MEGA6 (Tamura et al. 2013). The sequence was located using the complete mitochondrial genome of Asian tapir accessed from GenBank accession number NC023838 (Muangkram et al. 2013b). The nomenclature of the haplotype followed an earlier Ctb gene study of captive Asian tapir in Thailand by grouping into Ti-1, Ti-2, and Ti-3 (Muangkram et al. 2013b). Polymorphism and nucleotide diversity were calculated using DnaSP v5 (Librado & Rozas 2009). Finally, a phylogenetic analysis was constructed using a median-joining (MJ) network illustrated via NETWORK 4.6.1.2 (Bandelt et al. 1999) to estimate the intra-specific relationship among populations.

Results

The CR sequences were represented on the heavy chain and bound by tRNAPro and tRNAPro as in other mammal species. Our samples (N = 37) were divided into 11 maternal lineages (Table 1). The complete CR was 1268 bp in length comprising three typical
domains: ETAS (24.13%), central domain (24.84%), and CSB (51.03%). Two blocks of ETAS (ETAS1 and ETAS2) and three blocks of CSB (CSB1, CSB2, and CSB3) were conserved as in other mammal species. The comparison of nucleotide structure found that the total CR length of the Asian tapir was 58 bp shorter than the Brazilian tapir as a result of shorter lengths of the ETAS, central domain, and CSB by 11, 1, and 46 bp, respectively. However, the nucleotide composition between these two species was similar in each domain. In addition, the analysis of polymorphism based on CR sequences between the Asian tapir and Brazilian tapir found 303 polymorphic sites (22.9%).

Sixteen parsimony-informative variable sites (all transition substitutions) revealed 11 haplotypes across our captive Asian tapir samples originated from Thailand (Table 1). The variable site was 1.26% of CR region length. The highest polymorphic site was located in the ETAS domain with thirteen variable sites. The nucleotide diversity (\(\pi \)) was 0.00353 ± 0.0028 and the sequence conservation was 0.987. Haplotype diversity (Hd) was 0.877 ± 0.031. The most common nucleotide within the ETAS and CSB domains was adenine, and the most common within the central domain was thymine. Overall, the G + C (0.3914) content was lower than the A + T content as has been observed in other organisms. As expected, the long repetitive sequence 5'-(CACACGTATACGCATA)18-3' was located between CSB1 and CSB2. Comparing the repetitive sequences of the Asian tapir with Brazilian tapir showed it was also located between CSB1 and CSB2, but the pattern in the Brazilian tapir was different with 5'-(TACRCAYACGWY)27-3'.

The most common haplotype was Ti-1A (27.0%). The other populations mostly belonged to haplotype Ti-3B, Ti-2E, Ti-1C, and Ti-2B by 16.2%, 13.5%, 10.8% and 8.1%, respectively. Only two individuals were found in haplotype Ti-2A, Ti-3A, and Ti-3C. Haplotype group of Ti-1B, Ti-2C, and Ti-2D were only represented by a single individual (Table 1). The intra-specific level among our samples was determined using a MJ network based on 1268 bp in length of the control region (Figure 1). Three clades in the captive Thai population could be divided into three haplotypes of clade Ti-1 (40.54%) (including Ti-1A, Ti-1B, and Ti-1C), five haplotypes of clade Ti-2 (32.43%) (including Ti-2A, Ti-2B, Ti-2C, Ti-2D, and Ti-2E), and three haplotypes of clade Ti-3 (27.03%) (including Ti-3A, Ti-3B, and Ti-3C).

Discussion

The organization of CR elements and the repetitive sequences between CSB1 and CSB2 of Asian tapir was similar to the dominant populations of Perissodactyla species such as Brazilian tapir, white rhinoceros, black rhinoceros, Indian rhinoceros, donkey, and horse (Jama et al. 1993; Xu et al. 1996; Sbisà et al. 1997; Xu & Arnason 1997; Arnason et al. 2008). These typical patterns have also been observed in some Carnivora species such as gray seal, harbor seal, and elephant seal, although they differ from domestic cat, Artiodactyla species, and Cetaceans (Hoelzel et al. 1994; Sbisà et al. 1997). The identified repeat motif in the Asian tapir differed markedly from the motif identified in the single Brazilian tapir sequence currently deposited in GenBank. The Brazilian tapir motif was shorter 4 bp, but occurred at a higher copy number (27 copies). Overall, this resulted in a longer CR region in Brazilian tapirs when compared with Asian tapirs. It is of concern that we did not find any variation in number of repeats across the identified haplotypes that could infer the intra-specific relationship. Such variation is typical in other species (Xu et al. 1996; Xu & Arnason 1997). It remains to be determined if the lack of variation we observe is a result of low genetic diversity currently represented in captivity, or a result of low genetic diversity in the species due to low population sizes (human-induced or otherwise), or a genuine feature of the mtDNA makeup of this species (Lynam et al. 2012). Analyzing samples from wild-caught individuals across the range will help us determine which hypothesis is most likely.

Our suggestion in genetic management, the calculation results of Hd described the high score (0.877), meaning that the maternal lineage of this species is rapidly evolving with high level of genetic diversity (11 haplotypes). The phylogenetic relationship of the three clades in this study correlated well with the results from our previous work based on the Cytb gene presented three groups of captive Asian tapir populations originated from Thailand geographic range (Muangkram et al. 2013b). Transmission of genetic diversity based on the maternal lineage is limited from mother to offspring (Hutchison et al. 1974; Giles et al. 1980; Harrison 1989). Haplotype Ti-1A is the most dominant (27.0%), and in populations that contain more than five females this haplotype could be successfully transmitted to future generations. Haplotypes Ti-1C and Ti-3B could also be maintained by breeding from two healthy females in the population. The situation is more critical for
haplotypes Ti-2C, Ti-2E, Ti-3A, and Ti-3C that were represented by only one female each. They are at a much higher risk of extinction if these females are unable to breed. Haplotypes Ti-1B, Ti-2A, Ti-2B, and Ti-2D may already functionally extinct as only non-breeding females remain within the captive population. Overall, this represents a huge loss of diversity as less than five haplotypes are expected to carry on into the next generation.

Genetic diversity has recently been recognized as critical for the management of wild tapir populations that are now starting to show some population growth (Lynam et al. 2012). The risk of genetic drift in poorly managed in situ and ex situ breeding programs could lead to loss of important genetic variation (Lacy 1987). In addition, coordinating management efforts between the captive populations in zoos and wild populations is crucial to maintain critical levels of gene flow. A further extension of our work is to use the small region containing highly variable sites on the 5' proximal part of CR sized 476 bp in length using the forward primer on tRNAPro (Muangkram et al. 2013b) and the reverse primer on the central domain of the CR (Ward et al. 1999). This fragment could be used to manage the genetic diversity of new Asian tapir specimens.

Our study focused mainly on the evolutionary relationship between the Asian and the Brazilian tapir. More work is needed to resolve the relationship with Mountain and Baird’s tapirs. Furthermore, combining information from analysis of Cytb gene (Ogata et al. 2009; Muangkram et al. 2013b) and non-coding region of the CR (this study) could help researchers to better understand and maintain genetic diversity within the Tapiridae for improved genetic management of this endangered species. Such genetic monitoring and health assessment could be incorporated into population viability assessments and could be used to identify those haplotypes most at risk of extinction (Muangkram et al. 2013a). Moreover, the use of other polymorphic markers such as the Y-chromosome and genetic diversity in parental lineages including microsatellite markers could also provide more powerful tools for captive breeding and reintroduction programs for Asian tapirs.

Acknowledgements

The authors are grateful to O. Oni for useful comments on earlier versions of the manuscript.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

Jama M, Zhang Y, Aman RA, Ryder OA. 1993. Sequence of the mitochondrial control region, tRNA(Thr), tRNA(Pro) and tRNA(Phe) genes from the black rhinoceros, Diceros bicornis. Nucleic Acids Res. 21:4939.

